
H E A T  T R A N S F E R  D U R I N G  S H E E T  R O L L I N G  
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An analyt ical  solution to the heat  conduction p rob lem with a moving boundary is  der ived for  
the de te rmina t ion  of pr incipal  t e m p e r a t u r e s  in a metal  during sheet  roll ing. 

We will consider  the p rob lem of de termining the metal  t e m p e r a t u r e  during sheet  roll ing.  We as sume  
that, before  rol l ing,  the bi l let  const i tutes  an infinitely l a rge  plate of thickness  2R. 

As the initial condition in this p rob lem we take the t e m p e r a t u r e  of the metal  a f te r  i t  has been r e -  
moved f rom the reheat ing  furnace.  I t  will be assumed,  f u r t he rmore ,  that the t empe ra tu r e  dis tr ibut ion 
a c r o s s  a bi l le t  sect ion is at this instant  parabol ic :  

\ 

T (x, O) = Tor + a To (-~ ) ~. (z) 

During a b r eak  period the mean  the rma l  flux through the metal  surface  to the surrounding medium is  
ql- During compres s ion  per iods  the mean (with r e spec t  to t ime) the rmal  flux f rom the metal  to the ro l l s  
is q2- Such a model of heat  t r an s f e r  between metal  and surrounding medium fs idealized.  Actually, during 
a b reak  per iod the heat  is t r a n s f e r r e d  f rom the meta l  according  to the Newton law and the S t e f a n - B o l t z -  
mann law, while during compres s ion  the heat  is t r a n s f e r r e d  by conduction through the m e t a l - s c a l e - r o l l  
sys tem.  Of course ,  nei ther  during the t r anspo r t  nor  during the compres s ion  does the thermal  flux r e m a i n  
constant  with t ime.  

On the other  hand, the magni tudes of the the rma l  f luxes ql and q2 depend also on the consecutive 
number  of a given pass .  Considering that ql and q2 vary  only slightly during a rol l ing operat ion,  however ,  
such an ideal izat ion of the p r o c e s s  is p e r m i s s i b l e .  

During c o m p r e s s i o n  there is heat  r e l eased  in the bulk of metal  as a r e su l t  of p las t ic  deformat ion.  
General ly ,  this heat  is d is t r ibuted over  the metal  volume nonuniformly corresponding to the distr ibution of 
shear  ra te  [1]. In our case ,  however ,  we ignore this and assume  that during a c o m p r e s s i o n  per iod there is 
a uniformly dis t r ibuted heat  source  within the metal  volume act ing with a power of W 2 W / m  3. During b reak  
per iods  the power of the heat  source  is  W 1 = 0. 

After  each pass  the thickness  of a ba r  is reduced by the amount of compress ion ,  i .e . ,  the bi l let  edge 
advances  according to some power law. For  s impl ic i ty ,  we a s sume  that the bar  edge moves  l inear ly  at a 
speed of s m / s e c .  

In o r d e r  to de te rmine  the t empe ra tu r e  dis tr ibut ion function for the volume of rol led meta l ,  we use the 
differential  equation of heat  conduction: 

OT O~T W (t) - - = a - - +  . , O ~ x ~< R - -  st (2) 
Ot Ox 2 c p 

and the boundary conditions 
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aT ,=R-,t . . . .  q (t) 

ax ~, ' 

w h e r e  
w (t) = w,f  (t), 

q (t) = q, + (q~ - -  q,) f (t). 

Func t ion  f(t) h a s  the fol lowing va lues :  

fo r  the (m + 1)- th b r e a k  pe r i od  

~ t  

f (t) = "~. n it - -  (m - -  i)  to - -  t , l  - - n ( t  - -  mto); 
1 

fo r  the (m + l ) - t h  c o m p r e s s i o n  
t?~ , m 

f (t) = ~ n (t - , ,to - t,) - ~ n(t - ,,,to). 
0 1 

The uni ty funct ion ~ (z) i s  def ined  as  

~l(z)--{01 fo~ z < O ,  
for z ~ 0. 

The so lu t ion  to o u r  p r o b l e m  wil l  be sought  in the fo l lowing fo rm:  

Z x,_~ . d" B (t) + V(t) t. 
T (x, t) = (2n)!a n d--t 7 --c P 

n=O 

The bounda ry  condi t ion  (4) wi l l  be  r e w r i t t e n  as  

Z ( R  - -  st) 2" - '  d" B (t) = - - -  ~q (t) 
(2n)!a ~ dt ~ L 

n = l  

Sta r t ing  out with (1), we a s s i g n  the ini t ia l  condi t ions  for  the B(t) funct ion as  

d t=0= dn B (t)ln~] = 0. B (0) = Toe; - ~  B (t) 2a A To; - ~  

We now in t roduce  the d i m e n s i o n l e s s  quan t i t i es :  

X ~- ;  = a t  T L .  B ( x ) g .  
= x R2, v=~iR, p(~)= q,R ' 

K (~) W (x) R.  b M x; M sR, Q(~) q ('0 
ql a ql 

to e x p r e s s  (5) and (6) in d i m e n s i o n l e s s  f o r m :  

X2 ~ d" 

v (X, ~) " (2n)! d ' :  
n ~ O  

f} ('0 + / ( ( * )  "~, 

Z ( 1 - b )  ~-1 d" ~(~) _O(~) .  
(2n - -  l)t de ~ 

We in t roduce  a t en ta t ive  p a r a m e t e r  ~ which  c h a r a c t e r i z e s  the c o n v e r g e n c e  and we r e w r i t e  (9) a s  

~/  ( 1 - -  ~ b) un-1 d a 
(2rt =- 1)!" d T -----~ 13 (~) = - -  Q (T). 

(4) 

(5) 

(6) 

(7) 

(7') 

(s) 

(9) 

(1 o) 
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Function fl(T) will be approximated  by the s e r i e s  

13 (~) = 13o + ~lh + ~% + . . .  ( 1 1 )  

Inse r t ing  (11) into (10) and compar ing  the coeff icients  of like power t e r m s  in }, we find success ive  
approximat ions  to the different ial  equation (9). For  example ,  the zeroth approximat ion is  

Z 1 d ~ 
(2n - -  1)! d "r .[~o ('c) = - -  Q ('r). (12) 

We will then solve the p rob lem in the zeroth approximat ion.  The initial conditions for  function ~0 (7) 
will be 

~o (o) = ~,o~; ~ (~)I~=o = 2A ~o; ~o c~, (~) I~ =o~>, = o. (I 3) 

The integral  L a p l a c e - C a r s o n  t r ans fo rmat ion  is  now applied to the differential  equation (12). In the 
image  plane we find the solution for  function/~0 (T): 

where  

~0 (P) = Uoc + 2A vo 2A vo -5 Q(P) (14) 
v VT~h VT '  

~ ( p )  = 1 + ( c ' -  1) ~(p). 

Function [(p) has  the values:  

for  the (m + 1)-th b r eak  per iod 

m 

r(P) = Z exp {-- p[(m --1)% + %1} - -  exp (---pm'co)~ 
0 

for  the (m + 1)-th c o m p r e s s i o n  

' i n  rn 

F(P) -= ~ exp [-" p (m'c o 4- "c,)] - -  Z exp (-- pm %), 
0 l 

where  p is  a complex p a r a m e t e r .  

With the aid of the lag t heo rem it is poss ible  to obtain a solution in the region of the real  var iab le .  

where  

For  the f i r s t  b reak  period:  

For  the f is t  compress ion :  

I~o ('c) = r (~), (15)  

(t:) = Voc + 2A v o 1: - -  2A v o ~ 0:) - -  r (~), 

1 2 ' ~  (--  1) k exp (-- n~k'~) 

k = l  

(16) 

(I 7) 

~o (~) = ~ ( ' )  - -  (c' - -  1) �9 ('c - -  v,) n (v - -  ~,). (18) 

By analogy, for  the (m + 1)-th b r eak  per iod:  
ra  

[}o(r = tp(g) - -  (c' - -  I) { 2  (1) [T - -  (m - -  l)z o -  ~a]~l['c - -  (m - -  I) % - -  ~1] - -  @ (x - -  m %) ~l ('c - -  m %) }, 
1 

and for the (m + l)-th compression: 

rn m 

0 1 

(19) 

(20) 
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The roi l ing p rocess  is usually completed within short  periods of time. Considering that the ser ies  
in ~(T) is not convergent  enough at small  values of T, it is worthwhile to represent  this function in a form 
convenient for calculations at such small time values. In accordance with [2], we per fo rm the following 
t ransformat ion:  

\ 

1 2exp (-- ~/p) 

r r h- - r exp (-- 

Taking into account that exp ( - 2 5 p )  < 1, one can wri te  

2exp (-- ]/"p') 2exp (-- 1,/p -) V exp (-- 2k ]/-pp ). 
]/-p[1 - -  exp(--2l/p-)] r p 

(2i) 

Disregarding  all t e rms  af ter  the f i rs t  one in ser ies  (21), we obtain after inverse t ransformation:  

[ - ] 
This express ion is much more  convenient than (17) for calculations at small  time values. 

Similarly one can determine the next approximations of function g(~-). Calculations have shown that 
this is not necessa ry ,  however,  because the f i rs t  approximation is a lmost  the same as the zeroth one and, 
therefore ,  it is permiss ib le  to l imit  the calculat ions to the zeroth approximation, 

An analysis  has shown that the se r ies  in express ion (8) is not convergent enough at values of X 
close to unity. At X = 0.9, for  example, it was necessa ry  to include 16 t e rms  of the ser ies  before an ac -  
curate resul t  could be obtained. It would be desirable to find a solution not as cumbersome as that. Con- 
s idering tha t la rge  values of X correspond to the f i rs t  stage of the roll ing process ,  such a solution can be 
found on the basis  of the following conceptions. 

In accordance  with the engineering model of heat conduction in [3], a heat pulse t ransmit ted to the 
billet surface reaches  to center  of the billet after  an inertial time interval.  In our ease the body is a plate 
whose thickness is 2 ( R - s t )  and in which the tempera ture  field is symmetr ica l .  Within the inertial time 
interval it is a lmost  immater ia l  whether  in an analytical descript ion of the temperature  field in a layer  
R '  = R - s t  thick this layer  is assumed infinite or semiinfinite. Therefore ,  we will look for the t empera -  
ture distr ibution function inside a semiinfinite body whose edge advances l inearly.  Within the inertial t ime 
interval this function will sa t i s fac tor i ly  descr ibe the tempera ture  field in the bar  at large values of X. 

The differential equation of heat conduction 

02T W (t) fl_T__T = a -?-  + - - - -  ( s t < y <  oo) (23) 
Ot @ co 

is solved with the constraints :  

OT I = q(t), (24) 
)~ Oy u=a 

T(c~, l) & oo, (25) 

T (y, 0) = T o c-k (R - -  y)~ A T o. (26) 
R2 

The initial condition (26) is incompatible with condition (25), but of interest  here  is a metal layer  with 
an initial thickness R and, therefore ,  we will d i s regard  this contradiction. 

In o rde r  to t r ans fo rm a moving temperature  field in a s tat ionary sys tem of coordinates into a s ta -  
t ionary field in a moving sys tem of coordinates ,  we let [4, 5] 

x 1 = g - -  st. (27) 

Using the dimensionless  quantities, we obtain a sys tem of dimensionless  equations in a moving s y s -  
tem of coordinates:  
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ox~ + M 
,90 Ov 

OX, + K(x) = -~- .  (0 < Xx -< oo), (28) 

av [ = Q (~), (29) 
OX1 x,=o 

v (oo, "0 4: oo, (30) 

v (X x, O) --- Voc + Av o (1 - -  Xx) ~, (31) 

w h e r e  X 1 = x i /R  and the o the r  quant i t ies  a re  d e t e r m i n e d  f rom (7'). (In this  ease  R denotes  the ini t ial  th ick-  
nes s  of the meta l  l aye r . )  

Af te r  p e r f o r m i n g  the L a p l a c e - C a r s o n  t r a n s f o r m a t i o n  on (28), we obtain the equat ion in e p e r a t o r  
fo rm:  

O~v(X~, p) Ov (X~p) ~ ( X  1, p)=---Kp--PVocLpAvo(i--Xz)% (32) 
ax~ + M ax~ 

The solut ion to the p r o b l e m  in the image  plane is  w r i t t e n  as  

-M-r-T-- 
2AvoMexp[--XI( - -~-+V / -T- + P ) ]  

~ ( X  1, p ) - - L ' o I ~ -  
m 

2 + ~---~ + P  

2M~ (1 - -  X1)2]. + A Vo [ ~ (1-- M + MXI) + - 7 - +  
J 

(33) 

A subsequent  i nve r se  t r a n s f o r m a t i o n  y ie lds  fo r  the (m + 1)- th b r e a k  pe r iod  

v (X I, x) - -  Voc : 2A voMN (x) - -  2A v o ~ (~) - -  * (x) 
t n  t n  

- -  (C' - -  1) % * (Z1) 2] (Z1) - -  * (Z2) ~] (Z2) "Jr- K 2 ~ Zln  (Zl) - -  z~]  (z2) 
1 1 

+ Ao o [2 (1 - -  M + MX1) x + M~x ~ + (1 - -  X,)~I, 

and fo r  the (m + 1)-th c o m p r e s s i o n  

v (X, ~c) -- roe - 2avoMN (-~) - -  2Avoq~ ('0 - -  q~ (z) 
m m m m 

0 1 0 I 

+ ao o [2 (] --M + MXI) T + mz* 2 + (I - -  Xl)2] ,  

w h e r e  

T --ff l/~- dr, 

N ('0 = S ~ (0  dt; 
0 

gl = ~ ---- ( /n - -  l )  T 0 -'-- T1; Z2 : "~ ~ i n T O ;  z 3  : T, , - -  m ~  0 - -  T 1 . 

(34) 

(35) 

E x p r e s s i o n s  (34) and (35) a re  m o r e  convenient  than funct ion (8) fo r  ca lcu la t ions  with X ~ 1 (which 
c o r r e s p o n d s  to X 1 - - 0 ) .  
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,,(o,,r) ----7 
o, oo~<1 ~ 
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F ig .  I 

x •  -qoo2 
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N,x ! 

Y 
J 

' 0,o/o 
o8 o, oe "r 4o6 0,07' o, oo #on ~" 

F ig .  2 

F ig .  1. T e m p e r a t u r e  a t  the c e n t e r  of a b a r  a s  a funct ion  of t i m e ,  a t  v a r i o u s  v a l u e s  of 

the K 2 n u m b e r .  

F ig .  2. Mean  t e m p e r a t u r e  (1), s u r f a c e  t e m p e r a t u r e  (2) and t e m p e r a t u r e  a t  the c e n t e r  

(3) of  a b a r ,  a s  func t ions  of t i m e  for  K 2 = 1. 

Of s p e c i a l  p r a c t i c a l  i n t e r e s t  i s  a c a l c u l a t i o n  of  the m e a n  (over  the c r o s s  sec t ion)  b a r  t e m p e r a t u r e  
d u r i n g  p a s s e s .  An e x p r e s s i o n  fo r  th i s  m e a n  t e m p e r a t u r e  can  be ob t a ined  s i m p l y  by i n t e g r a t i n g  (8) o v e r  the 

i n t e r v a l  f r o m  0 to ( l - b ) :  

IDb ~ 

, svr ,< : , ,  d,, ] 
0 n ~ 0  

Z (l--b) ," d" 
= ( 2 n +  1)! d'c ~ ( ~ c ) + K ( ' Q ' r "  (36) 

,,*=0 

The bar temperature in dimensionless values was calculated for individual passes using Eqs. (8), 
(9), (20), (34), (35), and (36). The values of the dimensionless quantities characterizing the rolling process 

were assumed: Av 0 = 0, M = 10, m I = 0.0099, -r 2 = 0.0001, number of passes i0, c' = 20, metal thickness after 

rolling X = 0.083. 

The results of calculations are shown in Figs. 1 and 2. The following can be concluded from Fig. I. 
During each pass the temperature at the center of a bar rises owing to the heat given off by the metal as 
a result of plastic deformation. After the inertial time interval has elapsed (~- ~ 0.04), the center layer of 
the bar begins to cool clown as a result of a heat transfer from the 'metal surface to the surrounding medium. 
Depending on the consecutive number of a given pass and also on the ratio of heat generated during com- 
pression to heat lost to the surrounding medium, the temperature at the center of a billet will be either 

higher or lower than initially. 

As the rolling process nears completion, the temperatures at all points of a bar tend toward the mean 

temperature (Fig. 2.). 

While the principal temperatures of a rolled metal are by the conventional method calculated from 
the mean-mass-temperature, the method proposed here makes it possible to account for the nonuniform 

temperature distribution aeross the bar height. 

NOTATION 

T(x, t) 
X 

t 

Toc 
A T O 
a 

metal temperature; 
linear coordinate; 
time; 
temperature at center of billet when removed from furnace; 
initial temperature drop across billet cross section; 
thermal diffusivity; 
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C 

P 
), 

tl 

t2 
t o = t 1 + t 2 ; 
c '  = q2/ql .  

speci f ic  heat  of metal;  
densi ty of metal ;  
t he rma l  conductivity of metal ;  
ave rage  durat ion of b reak  period;  
average  t ime of contact between metal  and roll;  

]o 

2. 
3. 
4. 
5. 
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